Dr. H. N. Sinha Arts and Commerce College, Patur M.Sc Chemistry

Prepared By :- Asst. Prof. Vijaya.P.Sakhare

Infrared Spectroscopy

IR Spectroscopy

- Used to identify organic compounds
 - IR spectroscopy provides a 100% identification if the spectrum is matched.
 - If not, IR at least provides information about the types of bonds present.
- Easy to use
 - liquids analyzed between salt plates
 - solids in a KBr pellet
 - small amounts of unknowns via an FTIR microscope
 - analysis time typically < 10 minutes</p>
- Inexpensive
 - FTIR spectrophotometers are found in most labs.

IR Spectroscopy

- IR is used to measure the vibrational frequencies of bonds in the molecule.
 - Bonds are not rigid. A bond can be viewed as a spring with a weight at each end.
 - Each bond has a characteristic frequency.
 - The IR scans a range of frequencies (in the infrared part of the electromagnetic spectrum). Any frequency which matches the characteristic frequency of a bond will be absorbed.

IR Spectrophotometers

- In the old days, the frequencies were stepped through, one at a time, and the absorption measured.
 - This means of data collection was very slow.
- Laser technology and computers have made available a much faster means of data collection.

FTIR Spectrophotometers

- Fourier Transform Infrared Spectrophotometer
 - Uses an interferometer and polychromatic light (all frequencies used at one time, instead of one at a time) to generate an interferogram.
 - The interferogram is then mathematically decoded by a Fourier transformation.
 - interferogram
 - intensity vs time
 - after the Fourier transformation
 - intensity vs frequency...an IR spectrum

FTIR Spectrophotometers

- http://www.chemistry.oregonsta te.edu/courses/ch361-464/ch362/irinstrs.htm
- FTIR spectrophotometers collect data very quickly and, of course, the spectra can be stored and reviewed electronically.

An IR Spectrum

 $lue{\Box}$ A plot of % transmittance vs vibrational frequency in wavenumbers \bar{v} (cm⁻¹)

$$c = \lambda \upsilon$$

$$v = \text{frequency}$$

$$c = \text{speed of light in a vacuum}$$

$$\lambda = \text{wavelength}$$

$$\lambda = \frac{1}{\lambda} = \frac{\upsilon}{c}$$

$$\frac{-}{\upsilon} = wavenumber = \frac{1}{\lambda} = \frac{10000}{\lambda(\mu m)}$$

Wavenumbers

The higher the wavenumber, the shorter the wavelength.

$$\frac{-}{\upsilon} = wavenumber = \frac{1}{\lambda} = \frac{10000}{\lambda(\mu m)}$$

An IR Spectrum

from http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/InfraRed/infrared .htm

An IR Spectrum

- The wavelength of IR radiation is in the 2.5-25 micron range (compare to visible light in the 400-700 nm range).
- □ The frequencies of IR radiation are more conveniently expressed by a wavenumber $\bar{\nu}$ (cycles per cm), than by ν (cycles per 3 x 10^{10} cm).

- Bonds are not rigid but behave like a spring with a mass at either end.
 - Obey Hooke's Law: F = -kx
 - This gives rise to a characteristic frequency for the vibration:

$$\upsilon = \frac{1}{2\pi} \sqrt{\frac{k}{reduced_mass}}$$

$$reduced_mass = \frac{m_1 m_2}{m_1 + m_2}$$

Characteristic frequency for the vibration:

$$\upsilon = \frac{1}{2\pi} \sqrt{\frac{k}{reduced_mass}}$$

- The frequency is affected by
 - the masses of the atoms in the bond
 - the strength of the bond

- The lower the mass, the higher the vibrational frequency.
 - Stretching frequencies for bonds to carbon: C-H > C-C > C-N > C-O

$$\upsilon = \frac{1}{2\pi} \sqrt{\frac{k}{reduced_mass}}$$

- The stronger the bond, the higher the vibrational frequency.
 - Stretching frequencies

$$\square$$
 C \equiv C > C $=$ C > C $-$ C

$$\square$$
 C=N > C=N > C-N

$$\square$$
 spC-H > sp²C-H > sp³C-H

$$\upsilon = \frac{1}{2\pi} \sqrt{\frac{k}{reduced_mass}}$$

Number of Vibrational Frequencies in a Molecule

- There are 3n-6 possible vibrational modes in a nonlinear molecule with no symmetry
 - Symmetry reduces the number of possible vibrational modes.
- Water has 3 possible vibrational modes.
- Formaldehyde has 6.

The Fingerprint Region is Unique to the Molecule

- In addition, the vibration of a particular bond in a molecule affects the whole molecule.
 - The various harmonics of a bond vibration can combine and lead to a number of combinational bands.
 - The intensity of these bands is usually 1/100 the intensity of the main vibrational absorptions.
 - These make up the "fingerprint region." (occur at <1250 cm⁻¹)

Intensity of IR Absorptions

- In order for a vibration mode to absorb in the infrared, the vibrational motion must cause a change in the dipole moment of the bond.
- The intensity of the IR "peaks" is proportional to the change in dipole moment that a bond undergoes during a vibration.
 - C=O bonds absorb strongly.
 - C=C bonds generally absorb much less.

- Pay the most attention to the strongest absorptions:
 - -C=O
 - -OH
 - -NH₂
 - -C≡N
 - -NO₂
- Pay more attention to the peaks to the left of the fingerprint region (>1250 cm⁻¹).

- Pay the most attention to the strongest absorptions.
- Pay more attention to the peaks to the left of the fingerprint region (>1250 cm⁻¹).
- Note the absence of certain peaks.
- Be wary of O-H peaks, water is a common contaminant.

Characteristic IR Wavenumbers

Functional group	wavenumber (cm ⁻¹)
sp³ C-H str	~2800-3000
sp ² C-H str	~3000-3100
sp C-H str	~3300
O-H str	~3300 (broad*)
O-H str in COOH	~3000 (broad*)
N-H str	~3300 (broad*)
aldehyde C-H str	~2700, ~2800

^{*}The peak is broad when H bonding is extensive.
Otherwise, the peak can be sharp.

Characteristic IR Wavenumbers

Functional group	wavenumber (cm ⁻¹)
C=C isolated	~1640-1680
C=C conjugated	~1620-1640
C=C aromatic	~1600
C≡N	just above 2200
C≡C	just below 2200
C=O ester	~1730-1740
C=O aldehyde, ketone, or acid	~1710 (aldehyde can run 1725)
C=O amide	~1640-1680

- Look for what's there and what's not there.
- C-H absorption
 - The wavenumber will tell you sp³(C-C), sp²(C=C), sp (C≡C) and perhaps aldehyde.
- Carbonyl (C=O) absorption
 - Its presence means the compound is an aldehyde, ketone, carboxylic acid, ester, amide, anhydride or acyl halide.
 - Its absence means the compound cannot be any of the carbonyl-containing compounds.

O-H or N-H absorption

This indicates either an alcohol, N-H containing amine or amide, or carboxylic acid.

□ C≡C and C≡N absorptions

Be careful: internal triple bonds often do not show up in IR spectra.

- C=C absorption
 - Can indicate whether compound is alkene or aromatic.
- N-O of NO₂ absorption
 - This is a distinctive, strong doublet that it pays to know (1515-1560 & 1345-1385 cm⁻¹).

- Read the scale for the value of the wavenumbers (be able to interpolate), or
- Read the wavenumbers in the table provided.

This is an alcohol.

- O-H absorption, peak shape
 - Peak shapes are influenced by hydrogen bonding.
 - Lots of H-bonding, broad peak around 3300 cm⁻¹.
 - In a dilute solution, there is little H bonding and the O-H peak is sharper and around 3500 cm⁻¹.
- This can happen to N-H and the acid O-H as well.

This is a carboxylic acid.

This compound has two functional groups: a benzene ring and an aldehyde.

This is an alkyl ester. Esters and ketones have fairly similar spectra.

Effects of Conjugation

- Conjugation will lower typical absorption frequencies of double bonds due to the presence of some single bond character.
 - C=C
 - C=O
- Ring strain in cyclic compounds goes the other way and increases frequencies.

IR Spectra – Effect of Conjugation

What functional group(s) is (are) present?

This is a primary alkyl amine.

- http://www.cem.msu.edu/~reus ch/VirtualText/Spectrpy/InfraRe d/infrared.htm
- Nothing takes the place of sitting down with actual spectra and studying them.