Dr. H. N. Sinha Arts and Commerce College, Patur M. Sc Chemistry

Prepared By :- Asst. Prof. Vijaya.P.Sakhare

How does Microwave relate to other spectroscopies

- Different types of motion
 - Translational
 - Vibrational
 - Rotational.

What is Microwave Spectroscopy?

- Microwave stimulates Rotational translations
- Measures the rotational states of molecules
- Gas Phase
- Must have a dipole.

Applications of MW

- Measurement of bond lengths
- Observation by radio telescopes for life precursors in interstellar clouds
- Precise observation of translating stereochemistries and confirmation verification

Microwave Spectroscopy

RADAR was impetus for its invention

1948, Walter Gordy, first published review

Microwaves

Rotational vs. Vibrational

Where J = rotational

 Observed from lowest vibration state

$$E(J) = B J(J+1)$$

Motion of Rotation

- 3 Possible moments of inertia
 - $-I_a, I_b, I_c$

Diatomic molecule

Rotation E from Schrodinger.

•
$$I_a = I_b$$
, $I_c = 0$

•
$$B = \frac{h}{8Ic\pi^2}$$

•
$$I = R^2 u = \frac{(M_1 M_2)}{(M_1 + M_2)} R^2$$

Line spacing is 2B.

Theory of Microwave Spectroscopy

Microwave wavelength photon

Highest probability of transition

Molecules with dipoles

How do we measure if it will translate?

- Probability of Transition=∫ψrot(F)μ^ ψrot(I) dτ
 - Where: ψrot(F) is the complex conjugate of the final rotational state
 - ψrot(I) is the wave function of the initial rotational state
 - $-\mu$ is the dipole moment operator with X, y, z coordinates.
 - The function is positive.
 - Only tells if is allowed.

But there are limits.

- Photons limited
 - Each photon has one unit of momentum $\Delta J \pm 1$

Only one transition per

Is it available to translate?

Boltzmann distribution

$$\frac{nJ}{n0} = e(-\frac{Erot(J)}{RT}) / \sum_{J=0}^{J-n} e(-\frac{Erot(J)}{RT})$$

Where nJ=number of molecules excited

n0=number of molecules in ground state

R=gas constant

T=temperature

ErotJ=molar energy of the rotational state

Plot of Probability

- Probability of Population
- Similar to spectra

Linear

$$HC = N$$

Symmetric Tops

Antisymmetric tops

Spherical tops-Not active

Linear Molecules.

- Linear molecules(Rigid rotors)
- Bond length directly calculated
- $I_a = I_b$, $I_c = 0$ $I = R^2 u = \frac{(M_1 M_2)}{(M_1 + M_2)} R^2$

Linear Molecules.

- Linear molecules(Rigid rotors)
- $\Delta J = J' J'' = \pm 1$
- $v_{J'\leftrightarrow J''} = E(J') E(J'') = 2B(J'' + 1)$
 - Where $J'' = Lower \ level$ - $J' = Upper \ Level$

Symmetric Tops (Rotors)

- Two rotational axes same, one different
- Oblate
 - $-I_a \neq I_b = I_c$
 - Oblate.
 - Benzene, XeF₄
- Prolate
 - $-I_a = I_b \neq I_c$
 - Prolate.
 - CH₃Cl, NH₃

Symmetric Top Spectra

Why more complicated?

- With more axis, more complicated
 - Symmetrical molecules gain 2 terms
 - K = vector about the symmetry axis
 - Must be between –J and +J
 - M = rotational momentum about a external field
 - Also between –J and +J
 - 0 if no external field

Why more complicated?

With more axis, more complicated

$$-E(J,K) = BJ(J+1) + (A-B)K^2$$

• Where B=
$$\frac{h}{8\pi^2 cI_b}$$

• A=
$$\frac{h}{8\pi^2 c I_a}$$
 , Prolate

• A=
$$\frac{h}{8\pi^2 cI_c}$$
, Oblate

Why more complicated?

Which leads to Lines at:

 $-v_{J'\leftrightarrow J'',K} = E(J',K) - E(J'',K) = 2B(J''+1)$ $6.0 \leftarrow 5.0$ 63 kHz 28 kHz 62 kHz R intensity [a.u.] 0 --- 0 5126.8 5126.6 5126.7 5126.9 5127.0 $frequency \ [MHz]_{http://pubs.rsc.org/en/content/article}$ 2013/cp/c3cp51181b

Stark Effect

- Similar to Zeeman effect
- Lifts level degeneracy
- Due to external electric field
- 1rst Order-Linear
- 2nd Order-Quadratic

Stark Effect

•
$$E_{Stark}(J,K,M) = -\frac{uEKM}{J(J+1)}$$

- M = 0, no stark
- K, M \neq 0 splitting occurs
 - -M inc, + M dec

Hyperfine Splitting

- Coupling of Nuclear spin and molecular rotation.
 - If J > I, 2I+1 levels
 - If J < l, 2J+1 levels.

Hyperfine splitting

CF₃I, Splitting due to ¹²⁷I

Asymmetrical Tops

- Three different axes, 3 different inertias
- Most molecules.
- Very complex spectra.

Effect of Isotope Substitution

• $^{12}C^{16}O \rightarrow ^{13}C^{16}O$, mass \uparrow , B \downarrow (~1/I), E \downarrow .

Isotope splitting

Isotopic Substitution

As Isotopic Mass ↑, Energy ↓

Example (CO)

$$J=0->J=1$$

J=0->J=1 @ 3.84235 cm⁻¹

¹³CO

@ 3.67337 cm⁻¹

Instrumentation

- Most homemade.
- Two types spectrometers.
- Stark Modulated
- Fortier Transform Microwave Spectroscopy
 - Similar in concept to FTIR

Stark Modulated MW Spectrometer

- Samples introduced as a gas.
- Can be heated.
- Generally high vacuum.

FTMW Spectrometer

- Similar in principle to FTIR
- Broader Frequency, Greater Precision

Chipped Pulse FTMW

- Add waveform generators
- Widens Bandwidth several 1000x
- Decreases spectral search time

Chipped Pulse FTMW

FTMW Spectrometer

Typical setup

Sample Preparation/Introduction

Gas samples

- As is
- As a diluted analyte in a non-MW reactive gas such as Neon

Solids

- Laser abatement
- Vaporization

Liquids

- Vaporization
- Supersonic Expansion

Supersonic Expansion/Laser Ablatement

Applications of MW

- Measurement of bond lengths
- Observation by radio telescopes for life precursors in interstellar clouds
- Precise observation of translating stereochemistries and confirmation verification

Measuring Bond Length.

 For example, we will use the easiest case, a diatomic molecule, HCL.

cm ⁻¹	J->J+1	R(nm)
83.03	3-4	.1288
103.73	4-5	.1288
124.3	5-6	.1289
145.03	6-7	.1289
165.51	7-8	.1290
185.86	8-9	.1291
206.38	9-10	.1292
226.5	10-11	.1293

Calculation example (HCL)

$$B = \frac{h}{8Ic\pi^2}$$

$$R = \sqrt{\frac{h}{8\pi^2 cBu}}$$

$$\sqrt{\frac{6.626e - 34 \text{ J.S}}{8(3.14)^2 (2.99792458e10 \text{ cm.s})(\frac{35.5}{36.5} *1.661x10 - 27 \text{ kg})(10.3 \text{ cm}^{-1})}}$$

R=1.29x10⁻¹⁰ M or 0.129 nm

Calculation example (CO)

$$B = \frac{h}{8Ic\pi^2}$$

$$R = \sqrt{\frac{h}{8\pi^2 cBu}}$$

R=

$$\sqrt{\frac{6.626e - 34 \text{ J.S}}{8(3.14)^2 (2.99792458e10 \text{ cm.s})(\frac{48}{7})*1.661x10 - 27 \text{ kg})(1.9313 \text{ cm}^{-1})}}$$

 $R=1.13x10^{-10} M$ or 0.113 nm

Identification of Organics in Interstellar Space

- Gas phase molecules and radicals
- Observed using a radio telescope.
- Linear molecule
 - Simple spectra

Identification of Organics in Interstellar Space

- Symmetric Molecule
 - Complicated due to symmetric top
 - Many more possible states

Conclusion

- Useful for Gas Molecules
- Can determine bond length.
- Diverse usages for the technique.