Organic Chemistry

Condensation Reaction

Faizan Ahmad Khan

Assistant Professor

Department of Chemistry

Dr. H.N Sinha College Of Arts Commerce And Science Patur

Selective Organic Name Reaction

Msc Ist & IInd

CONDENSATION

STOBBE CONDENSATION

STOBBE CONDENSATION

- The formation of alkylidene succinic acids or their monoesters by the base-initiated condensation of carbonyl compounds with dialkyl succinate is called the Stobbe condensation.
- One mole of metal alkoxide is required per mole of carbonyl compound and ester, and the primary product is the salt of the half-ester.
- Succinic esters react much better than the others. One of the ester group is hydrolysed in the course of the reaction.

$$R^1$$
 O
 $+$
 H_2C
 CO_2Et
 (i) NaOEt
 $(1$ equivalent)
 (ii) H_3O^+
 R^2
 CO_2Et

Aldehyde
or Ketone

Diethyl succinate

GENERAL FEATURES

- Different types of carbonyl compounds can be used in this reaction. The R¹ and R² components in R¹R²CO may be H, alkyl, aryl, CH(R)CN, etc.
- Varieties of bases are used in this reaction. It may be KO*t*-Bu, NaH, NaOEt, Na metal, NaCPh₃. Solvents like ether, ethyl alcohol and tertiary butyl alcohol are commonly used.
- The diesters used are succinic esters and their substituted derivatives, but certain α, ω -diesters that do not undergo competitive Dieckmann condensation can also participate in Stobbe codensation.
- When symmetrical carbonyl compounds are used in the condensation, only one alkene stereoisomer is formed, but unsymmetrical ketones afford a mixture of E/Z-isomers.
- Under basic conditions, self condensations (aldol type) amongst the carbonyl compounds is possible and lowers the yield of Stobbe condensation.

MECHANISM

- The Stobbe condensation starts with the abstraction of α -hydrogen of the succinate ester by the base to produce an ester-enolate that in *situ* undergoes an aldol type reaction with the carbonyl compound to form a β -alkoxy ester intermediate.
- This is then followed by intramolecular acyl substitution to give a γ -lactone intermediate which undergoes ring-opening and concomitant double bond formation upon deprotonation involving the alkoxide ion.
- The mechanism involves the formation of a cyclic (lactone) intermediate.
- Under certain conditions, the intermediate lactone compound can be isolated.

MECHANISM

