Dr. H. N. Sinha Arts And Commerce College, Patur

Purification of Water

Presented by: Namrata A. Mohod

Purification of water comes under two heading:

Purification of water on Large scale

Small scale

- Storage
- Filtration
- Disinfection/Chlorination

Purification of water on Large scale

Storage

Results in natural purification

✓ Physical:

- Increase water quality
- Suspended particles (90%) settles down
- Allow the penetration of light and easy filtration

✓ Chemical:

- **Oxidation of organic matter by microbes**
- Decreases free ammonium
- Increases nitrates

✓ Biological:

Pathogenic microbes gradually die out

- In river water 90% decrease in bacterial counts in 5-7 days
- Optimum storage period 10-14 days if longer
- Aquatic plants grow causing bad smell and colour

Filtration:

98-99% microbes removed First used in Scotland (1804)

- Biological or slow sand filter
- Mechanical or rapid sand filter

Elements of slow sand filter >Supernatant water Bed of graded sand Under drainage system **Filter control valves**

Biological or slow sand filter

Supernatant Water:

Depth 1.0-1.5 meter – maintained at constant level

***** Purpose:

- Consistent HEAD of water to counter resistance Ensures Downward flow
- Waiting period (3-12 Hrs)
- Partial purification
 - ✓ Sedimentation
 - ✓ Oxidation
 - ✓ Particle agglomeration

Section of Filter Bed

Perforated pipes

Sand bed: 1.2 meter Most important part of filtre

- * O l'é clant part
- Quality of sand
 - ✓ Round with 0.15 0.35 cms diameter
 - ✓ Clean & free form clay, organic matter
- Sand bed is supported with graded gravels
- The sand bed presents large surface area
 - 1³ meter = 15,000 M²
- Slow passage of water 2 Hrs or more
- ➢ Mechanical straining
- Sedimentation
- **Adsorption**
- **Oxidation**
- Bacterial action

Flow rate: $0.1 - 0.4 \text{ m}^3/\text{h/m}^2$ surface area

Vital layer: 2-3 cms thick when fully formed Schmutzdecke / Zoogleal/Biological Layer

Heart of Filter

- Slimy, gelatinous layer containing thread-like algae and other microscopic life forms
- Formation of Vital Layer is known as RIPENING of Biologica Filter
- Until formation of Vital layer, water is wasted
- Removes organic matter
- Traps bacteria
- Oxidizes ammoniacal nitrogen into nitrates
 Bacteria free water

Under drainage system:

- Porous, perforated pipes for drainage of water supports
 - ✓ Supernatant water
 - ✓ Sand bed

Filter Box:

- Open rectangular Box 2.5 to 4.0 meters deep
- May be below ground

Supernatant Water: 1 – 1.5 MSand bed: 1.2 MGravel support: 0.30 MFilter bottom: 0.16 M

Filter Control: Venturi meter

> To control the flow of water and maintain water head

Filter Cleaning:

When the valve has to be kept fully open, cleaning is advised
Scrap top of the vital layer to 1-2 cms depth
After about 20 – 30 scrapings, new bed should be constructed
When bed height is about 0.5 – 0.8 M, construct new bed

Advantages:

- Simple to construct & operate
- Cheaper than Rapid Sand filters
- Very good quality water
 - Physically
 - Chemically
 - Bacteriologically

✓ Total bacterial count – 99.9 to 99.99% reduced
 ✓ E. Coli count – 99.0 to 99.9% reduction

Rapid sand Filter

or

Mechanical Filter

Coagulation:

Alum 5 – 40 mg/lit water Depends on •Turbidity & Color •Temperature •pH Rapid mixing: • Violent mechanical mixing • Rapid distribution of alum

Flocculation:

Slow, gentle mechanical stirring for about 30 min
 Thick floccules of aluminium hydroxide

Sedimentation:

Stored for about 2-6 hrs for settling down of the floccules

Contains impurities & bacteria

At least 95% of the precipitate must settle downRegular cleaning of the tank

Filtration: Filter Bed:

Surface area 80-90 m² (900 ft²)

Sand: 0.6-2 mm in size
 1 meter (2.5-3 ft) depth

Gravel: 30-40 cm (1-1.5 ft)

Water: 1-1.5 meter (5-6 ft)

Filtration rate: 5-15 m³/m²/hr

When HEAD loss is 7-8 ft, the Filter is cleaned

Back Washing

Advantages

- No preliminary storage needed
- Filter beds occupy less space
- > 40-50 times faster than Biological Filter
- Washing is easy
- Flexibility in operation

Rapid sand

1. SpaceLittle2. Filtration rate5-15 m3. Sand size0.6-2 mm4. Prelim treatmentChemic5. WashingBack wa6. OperationHighly sl7. TurbidityGood8. ColourGood9. Removal of Bacteria 98-99%

Little 5-15 m³/m²/hr 0.6-2 mm Chemical coagulation Back washing Highly skilled Good Good Large 0.1-0.4m³/m²//hr 0.15-0.35 mm Sedimentation Scrapping Less skilled Good Fair 99.9-99.99%

Slow sand

Disinfection/Chlorination

Supplement and not substitute of filtration

Kills pathogenic bacteria

No effect on certain viruses:

✓ Polio, Hepatitis
 ✓ Spores need higher dose
 ✓ Along with germicidal effect it oxidizes Fe, Mn, H₂S

Eliminates some taste/odour producing substances

Controls algae and slime organisms

✓ Aids coagulation

Action: $H_2O + Cl_2 \rightarrow HOCl + HCl$

Neutralized with water alkalinity

 $\mathbf{HOCl} \rightarrow \mathbf{H} + \mathbf{OCl}$

Disinfectant action is because of HOCl and OCl
 HOCl 70-80 times more active than OCl
 Best action at pH 7.0 → HOCl predominates
 Action of Cl₂ at pH 8.5 is unreliable

90% HOCl \rightarrow OCl

pH of water

6.0-7.5

Principle:

Water should be clear, free from turbidity

Chlorine demand should be estimated

• Contact period \rightarrow 60 min

Minimum concentration of free Cl₂:
 0.5 mg/lit for one hour

 Correct dose: Cl₂ demand + Free Cl₂

Chlorine demand:

Difference between amount of Cl₂ added and amount of residual Cl₂ at the end of specific period of contact (60 min) at a given temperature and pH of water

Break Point:

□ Amount of Cl₂ needed to destroy bacteria and oxidize organic matter and ammonical substances present in water

The point at which free chlorine starts appearing in water

The point at which Chlorine Demand of water is met

Method of Chlorination

Chlorine gas:

Use chlorinating equipment **First choice**, replaced other Cl₂ derivatives

- Cheap
- Quick in action
- Efficient
- Easy to apply

Chloramine:

✓ Loose compound of Cl₂ and NH₃

✓ Decrease tendency to give chlorinous taste

✓ Increase persistent residual Cl₂

 \checkmark Slower action as compare to Cl₂ gas

Perchloron: - Ca-compound with 60-70% of Cl₂

Break point chlorination/Free residual chlorination - Only reliable method of chlorination

Addition of Cl₂ till all organic matter present in water is completely oxidized and a little amount of free chlorine is left in water

Superchlorination:

- It is followed by dechlorination
- Used in heavily polluted water

Orthotolidine test

Developed in 1918

Detects both free & Combined chlorine O-tolidine (AR) solution in HCl (10%)

Yellow color – proportional to concentration
Reacts instantaneously with free chlorine
Reacts slowly with bound chlorine

0.1 ml OT reagent + 1.0 ml Water
Take reading within 10 seconds
Color appearing after 15-20 min – due to bound Cl₂

Orthotolidine-Arsenate (OTA) test

 Modification to eliminate reactions on account of interfering substances such as iron, manganese etc **Ozonization:**

Great potential usefulness

1906 \rightarrow France \rightarrow First ozone treatment plant

Advantages

- Powerful oxidizing agent
- Removes undesirable odour, colour and taste
- Inactivates viruses

Disadvantages

- No residual effect
- Destroys chlo-organic compounds
 0.2 to 1.5 mg/lit water

UV-irradiation:

Effective against most water containing microbes, not used on large scale

120 mm thick water table
200-295 nm wavelength

Advantages

No residual taste, odour

Very short exposure

•Over-exposure has no side effect

No foreign substance introduced

Disadvantages

Very expensive
No residual activity
Color/turbidity in water effectiveness
No rapid test to detect effectiveness

Small-scale purification

House:

Boiling:✓Rolling boil (5-10')✓Taste altered✓No residual effect

Chemical disinfection:

Bleaching powder: > Chlorinated lime > CaOCl2 –unstable, 33% available Cl2 > Mixed with lime 0.5 mg/lit

Chlorine tablets:

- Costly, good for small scale use
- 1 tab (0.5 gm) \rightarrow 20 lit water

Iodine:

- 2% solution \rightarrow 2 drops/lit \rightarrow 20-30'
- High cost
- Physiological activity

ĥ

Chlorine solution:

4 kg Bleaching Powder (5% solution of Cl2)

20 lit Water (25% Cl2)

Water filters:

- Chamberland filters
- Berkfeld filters

Disinfection of wells

Volume of water (lit.)
 Amount of bleaching powder

Volume :3.14 x d² x h
4x 1000d: Diameter in meter
h: Depth of water table
in meter

Bleaching powder :

2.5 g/1000 lits water (0.7 mg Cl₂/lit of H₂O)

Dissolve in water and discard sediment Discard Lime → Hardness

- Add this solution to water in well
- Leave for 1 hour, Test by OTA

Double Pot Method

- Continuous release of Cl₂
- One meter below water level
- Satisfactory for 2-3 weeks
- with 4,500 lits water in the well
- 360-450 lit/day consumption

Thank You